Eicosapentaensäure (EPA)

Definiton, Synthese, Resorption, Transport und Verteilung

Eicosapentaensäure (EPA) ist eine langkettige (≥ 12 Kohlenstoff (C)-Atome), mehrfach ungesättigte (> 1 Doppelbindung) Fettsäure (engl.: PUFAs, Polyunsaturated fatty acids), die zur Gruppe der Omega-3-Fettsäuren gehört – C20:5; n-3 [1, 16, 19, 24, 29, 40, 42].

EPA kann sowohl über die Nahrung, vor allem durch Öle von fettreichen Meeresfischen, wie Makrele, Hering, Aal und Lachs, zugeführt als auch im menschlichen Organismus aus der essentiellen (lebensnotwendigen) n-3-FS alpha-Linolensäure (C18:3) synthetisiert (gebildet) werden [1, 15, 19, 24, 40, 42].

Synthese

Alpha-Linolensäure ist der Präkursor (Vorläufer) für die endogene (körpereigene) Synthese von EPA und gelangt ausschließlich über die Nahrung, hauptsächlich durch pflanzliche Öle, wie Lein-, Walnuss-, Raps- und Sojaöl, in den Körper [19, 45]. Durch Desaturierung (Einfügung von Doppelbindungen, wodurch aus einer gesättigten eine ungesättigte Verbindung wird) und Elongation (Verlängerung der Fettsäurekette um 2 C-Atome) wird alpha-Linolensäure im glatten endoplasmatischen Retikulum (reich verzweigtes Kanalsystem flächiger Hohlräume, das von Membranen umschlossen ist) von Leukozyten (weißen Blutkörperchen) und Leberzellen zu EPA metabolisiert (verstoffwechselt) [1, 16, 19, 38, 42].

Frauen weisen im Vergleich zu Männern eine effektivere EPA-Synthese aus alpha-Linolensäure auf, was auf die Effekte des Östrogens zurückgeführt werden kann [8, 17]. Während gesunde junge Frauen etwa 21 % der alimentär (über die Nahrung) zugeführten alpha-Linolensäure zu EPA konvertieren [6], wird bei gesunden jungen Männern die alpha-Linolensäure aus der Nahrung nur zu etwa 8 % zu EPA umgewandelt [7].

Die delta-6- und delta-5-Desaturase sowie die Fettsäure-Elongase sind neben der EPA-Synthese aus alpha-Linolensäure auch für die Umwandlung von Linolsäure (C18:2; n-6-FS) zu Arachidonsäure (C20:4; n-6-FS) verantwortlich. Somit konkurrieren alpha-Linolensäure und Linolsäure bei der Synthese anderer biologisch wichtiger mehrfach ungesättigter Fettsäuren um die gleichen Enzymsysteme, wobei alpha-Linolensäure im Vergleich zur Linolsäure eine höhere Affinität (Bindungsstärke) zur delta-6-Desaturase aufweist. Wird beispielsweise mehr Linolsäure als alpha-Linolensäure über die Nahrung zugeführt, kommt es zu einer gesteigerten endogenen Synthese der proinflammatorischen (entzündungsfördernden) Omega-6-Fettsäure Arachidonsäure und zu einer verminderten körpereigenen Synthese der antiinflammatorisch (entzündungshemmend) wirksamen Omega-3-Fettsäure EPA [8, 16, 24, 36]. Dies verdeutlicht die Relevanz eines mengenmäßig ausgewogenen Verhältnisses von Linolsäure zu alpha-Linolensäure in der Nahrung [24, 36]. Nach der Deutschen Gesellschaft für Ernährung (DGE) sollte das Verhältnis von Omega-6- zu Omega-3-Fettsäuren der Nahrung im Sinne einer präventiv wirksamen Zusammensetzung 5:1 betragen [13, 16, 19, 24, 40, 42].

Resorption

EPA kann in der Nahrung sowohl in freier Form als auch gebunden in Triglyceriden (TG, dreifache Ester des dreiwertigen Alkohols Glycerin mit drei Fettsäuren) und Phospholipiden (PL, phosphorhaltige, amphiphile Lipide als wesentliche Bestandteile von Zellmembranen) vorliegen, die im Gastrointestinaltrakt (Mund, Magen, Dünndarm) einem mechanischen und enzymatischen Abbau unterliegen. Die aus der TG- und PL-Spaltung hervorgehenden Monoglyceride (MG, mit einer Fettsäure, wie EPA, veresteres Glycerin), Lyso-Phospholipide (mit einer Phosphorsäure veresteres Glycerin) und freien Fettsäuren, darunter EPA, vereinen sich im Dünndarmlumen gemeinsam mit anderen hydrolysierten Lipiden, wie Cholesterol, und Gallensäuren zu gemischten Micellen (kugelförmige Gebilde mit 3-10 nm Durchmesser, in denen die Lipidmoleküle so angeordnet sind, dass die wasserlöslichen Molekülanteile nach außen und die wasserunslöslichen Molekülanteile nach innen gekehrt sind), die die Aufnahme lipophiler (fettlöslicher) Substanzen in die Enterozyten (Zellen des Dünndarmepithels) des Duodenums (Zwölffingerdarm) und Jejunums (Leerdarm) ermöglichen [1, 16, 19, 24, 29].

Die Fettabsorption (Fettaufnahme) beträgt unter physiologischen Bedingungen zwischen 85-95 %.

In den Enterozyten wird EPA an FABPc (Fettsäure-bindendes Protein im Cytosol) gebunden. Die anschließende Aktivierung von proteingebundener EPA ermöglicht die Resynthese von Triglyceriden und Phospholipiden im glatten endoplasmatischen Retikulum (reich verzweigtes Kanalsystem flächiger Hohlräume, das von Membranen umschlossen ist) einerseits und – durch Entfernung der Fettsäuren aus dem Diffusionsgleichgewicht – die Aufnahme weiterer Fettsäuren in die Enterozyten andererseits [1, 16, 19, 24]. Es folgt die Inkorporation der EPA-enthaltenden TG beziehungsweise PL in Chylomikronen (CM, Lipoproteine), die für den Transport der im Darm aufgenommenen Nahrungsfette zu peripheren Geweben und zur Leber zuständig sind [1, 19, 24].

Transport und Verteilung

Die lipidreichen Chylomikronen (zu 80-90 % aus Triglyceriden bestehend) werden durch Exocytose (Stofftransport aus der Zelle) in die Zwischenräume der Enterozyten (Zellen des Dünndarmepithels) sezerniert (abgesondert) und über die Lymphe abtransportiert. Über das Lymphsystem gelangen die Chylomikronen in die Venen des Blutkreislaufs.

Während des Transports zur Leber wird ein Großteil der Triglyceride aus den Chylomikronen in Glycerin und freie Fettsäuren, darunter EPA, gespalten, die von peripheren Geweben, wie Muskulatur und Fettgewebe aufgenommen werden [1, 16, 19, 24]. Durch diesen Vorgang werden die Chylomikronen zu Chylomikronen-Remnants (CM-R, fettarme Chylomikronen-Restpartikel) abgebaut, die an spezifische Rezeptoren der Leber binden. Nach Bindung der freigesetzten EPA an FABPc kommt es zur Reveresterung von Triglyceriden und Phospholipiden. Die resynthetisierten Lipide können in der Leber weiter metabolisiert (verstoffwechselt) und/oder in VLDL (very low density lipoproteins; fetthaltige Lipoproteine sehr geringer Dichte) eingelagert werden, um durch diese über den Blutkreislauf zu extrahepatischen ("außerhalb der Leber") Geweben zu gelangen [16, 19, 24]. Indem im Blut zirkulierendes VLDL an periphere Zellen bindet, werden die Triglyceride gespalten und die dabei freiwerdenden Fettsäuren, darunter EPA internalisiert (nach innen aufgenommen). Daraus resultiert der Katabolismus (Abbau) von VLDL zu IDL (intermediate density lipoproteins) und anschließend zu LDL (low density lipoproteins; cholesterinreiche Lipoproteine geringer Dichte), das periphere Gewebe mit Cholesterin versorgt [16, 19, 24].

In den Zellen der Zielgewebe, wie Blut, Leber, Gehirn, Herz und Haut, kann EPA – je nach Funktion und Bedarf der Zelle – in die Phospholipide der Zellmembranen sowie der Membranen von Zellorganellen, wie Mitochondrien ("Energiekraftwerke" der Zellen) und Lysosomen (Zellorganellen mit saurem pH-Wert und Verdauungsenzymen), eingebaut, als Ausgangssubstanz zur Synthese von antiinflammatorischen (entzündungshemmenden) Eicosanoiden (hormonähnliche Substanzen, die als Immunmodulatoren und Neurotransmitter wirken), wie Prostaglandine der Serie 3 und Leukotriene der Serie 5, verwendet beziehungsweise in Form von Triglyceriden gespeichert werden [1, 10, 19, 26, 29, 42, 44].
Zahlreiche Untersuchungen konnten zeigen, dass das Fettsäuremuster der Phospholipide in den Zellmembranen stark von der Fettsäurezusammensetzung der Nahrung abhängt. So bewirkt eine hohe EPA-Zufuhr eine Erhöhung des Anteils an EPA in den Phospholipiden der Plasmamembranen durch Verdrängung der Arachidonsäure und damit eine Erhöhung der Membranfluidität [16].

Abbau

Der Katabolismus (Abbau) von Fettsäuren findet in allen Körperzellen statt und ist in den Mitochondrien ("Energiekraftwerke" der Zellen) lokalisiert. Ausgenommen sind Erythrozyten (rote Blutkörperchen), die keine Mitochondrien besitzen, sowie Nervenzellen, denen die fettsäureabbauenden Enzyme fehlen. Der Reaktionsablauf des Fettsäurekatabolismus wird auch als ß-Oxidation bezeichnet. In der ß-Oxidation werden die zuvor aktivierten Fettsäuren (Acyl-CoA) in einem Zyklus, der wiederholt durchlaufen wird, oxidativ zu mehreren Acetyl-CoA (aus 2 C-Atomen bestehende, aktivierte Essigsäure) abgebaut. Dabei wird Acyl-CoA pro "Durchlauf" um 2 C-Atome – entsprechend einem Acetyl-CoA – gekürzt [24, 25].

In der Mitochondrienmatrix wird EPA-CoA in die ß-Oxidation eingeschleust, deren Zyklus – wie folgt – einmal durchlaufen wird [16, 25]

  • Acyl-CoA → alpha-beta-trans-Enoyl-CoA (ungesättigte Verbindung) → L-beta-Hydroxyacyl-CoA → beta-Ketoacyl-CoA → Acyl-CoA (Cn-2)

Das Resultat ist eine um 2 C-Atome verkürzte EPA, die vor Eintritt in den nächsten Reaktionskreislauf an ihrer cis-Doppelbindung enzymatisch trans-konfiguriert werden muss. Nach erneutem Durchlauf zweier ß-Oxidationszyklen und Verkürzung der Fettsäurekette um weitere 2 x 2 C-Atome erfolgt die trans-Konfiguration der nächsten cis-Doppelbindung der EPA, die sich auf einem geradzahligen C-Atom befindet [16, 25].

Die aus dem EPA-Katabolismus hervorgehenden Acetyl-CoA werden in den Citratzyklus eingebracht, die gemeinsam mit den reduzierten Coenzymen aus der ß-Oxidation in der Atmungskette zur Synthese von ATP (Adenosintriphosphat, universelle Form unmittelbar verfügbarer Energie) genutzt werden [16, 24, 25].

Ausscheidung

Unter physiologischen Bedingungen sollte die Fettausscheidung mit dem Stuhl bei einer Fettzufuhr von 100 g/Tag aufgrund der hohen Absorptionsrate (85-95 %) nicht mehr als 7 % betragen [16].


Fettsäurestoffwechsel – Omega-3-Typ (Graphik)

Literatur

  1. Biesalski H. K., Fürst P., Kasper H. et al. (2004) Ernährungsmedizin. Nach dem Curriculum Ernährungsmedizin der Bundesärztekammer. 3. Auflage. Georg Thieme Verlag, Stuttgart
  2. Bolton-Smith C., Woodward M., Tavendale R. (1997) Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. Eur J Clin Nutr; 51(9): 619-24
  3. Brenner R.R., Bernasconi A.M., Gonzalez M.S., Rimoldi O.J. (2002) Dietary cholesterol modulates delta6 and delta9 desaturase mRNAs and enzymatic activity in rats fed a low-eFA diet. Lipids; 37(4): 375-83
  4. Brenner R.R. (2003) Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids; 68(2): 151-62. Review
  5. Brenner R.R., Rimoldi O.J., Lombardo Y.B. et al (2003) Desaturase activities in rat model of insulin resistance induced by a sucrose-rich diet. Lipids; 38(7): 733-42
  6. Burdge G.C., Wootton S.A. (2002) Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr; 88(4): 411-420
  7. Burdge G.C., Jones A.E., Wootton S.A. (2002) Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr; 88(4): 355-364
  8. Burdge G. (2004) Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care; 7(2): 137-144
  9. Burton J.L. (1989) Dietary fatty acids and inflammatory skin disease. Lancet; (1): 27-31
  10. Calder P.C. (2002) Dietary modification of inflammation with lipids. Proc Nutr Soc; 61(3): 345-358
  11. Charnock J.S. (2000) Gamma-linolenic acid provides additional protection against ventricular fibrillation in aged rats fed linoleic acid rich diets. Prostaglandins Leukot Essent Fatty Acids; 62(2): 129-34
  12. Cunnane S.C. (2003) Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res; 42(6): 544-568
  13. D-A-CH (2000) Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (SVE): Referenzwerte für die Nährstoffzufuhr. 1. Auflage, Umschau/Braus Verlag, Frankfurt am Main
  14. Das UN (1981) Auto-immunity and prostaglandins. Int J Tissue React; 3(2): 89-94. Review
  15. Dietl H., Ohlenschläger G. (2003) Handbuch der Orthomolekularen Medizin. Karl F. Haug Verlag, Stuttgart
  16. Elmadfa I., Leitzmann C. (2004) Ernährung des Menschen. 4. Auflage. Verlag Eugen Ulmer, Stuttgart
  17. Giltay E.J., Gooren L.J., Toorians A.W. et al (2004) Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr; 80(5): 1167-1174
  18. Hahn A. (2001) Nahrungsergänzungsmittel. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart
  19. Hahn A., Ströhle A., Wolters M. (2006) Ernährung. Physiologische Grundlagen, Prävention, Therapie. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart
  20. Hornych A., Oravec S., Girault F. et al (2002) The effect of gamma-linolenic acid on plasma and membrane lipids and renal prostaglandin synthesis in older subjects. Bratisl Lek Listy; 103(3): 101-7
  21. Horrobin D.F. (1981) The importance of gamma-linolenic acid and prostaglandin E1 in human nutrition and medicine. J Holistic Med; 3: 118-39
  22. Horrobin D.F., Manku M. (1983) How do polyunsaturated fatty acids lower plasma cholesterol levels? Lipids; 18(8): 558-62
  23. Horrobin D.F. (2004) Ideas in biomedical science: reasons for the foundation of Medical Hypotheses. Med Hypotheses; 62(1): 3-4. No abstract available.
  24. Kasper H. (2004) Ernährungsmedizin und Diätetik. 10. Auflage. Urban & Fischer Verlag, München
  25. Königshoff M., Brandenburger T. (2004) Kurzlehrbuch Biochemie. Georg Thieme Verlag, Stuttgart
  26. Kris-Etherton P.M., Harris W.S., Appel L.J. (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation; 106(21): 2747-2757
  27. Leaf A., Kang J.X., Xiao Y.F., Billman G.E. (1999) N-3 fatty acids in the prevention of cardiac arrhythmias. Lipids; 34 (Suppl): 187-189
  28. Lee J.H., Ikeda I., Sugano M. (1991) Dietary cholesterol influences on various lipid indices and eicosanoid production in rats fed dietary fat desirable for the protection of ischemic heart disease. J Nutr Sci Vitaminol (Tokyo); 37(4): 389-99
  29. Leitzmann C., Müller C., Michel P. et al. (2005) Ernährung in Prävention und Therapie. Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG
  30. Lichtenstein A.H., Jones P.J. (2001) Lipids: absorption and transport. In: Bowman B.A., Russel R.M., eds. Present Knowledge in Nutrition. 8th ed. ILSI Press; Washington D. C., 93-103
  31. Mandon E.C., de Gomez Dumm I.N., Brenner R.R. (1986) Effect of epinephrine on the oxidative desaturation of fatty acids in the rat adrenal gland. Lipids; 21(6): 401-4
  32. Mandon E.C., de Gomez Dumm I.N., de Alaniz M.J. et al (1987) ACTH depresses delta 6 and delta 5 desaturation acivity in rat adrenal gland and liver. J Lipid Res; 28(12): 1377-83
  33. Manku M.S. (2005) PLEFA welcomes our new Associate Editors. Prostaglandins Leukot Essent Fatty Acids; 73(5): 323-5.
  34. Meydani S.N. (1996) Effect of n-3 polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition; 12: S8-S14
  35. Moll K.-J., Moll M. (2006) Anatomie: Kurzlehrbuch zum Gegenstandskatalog 1. 18. Ausgabe. Elsevier, Urban&Fischer Verlag, München
  36. Mozaffarian D., Micha R., Wallace S. (2010) Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med; 7(3):e1000252
  37. Muskiet F.A., Fokkema M.R., Schaafsma A. et al (2004) Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr; 134(1): 183-186
  38. Nakamura M.T., Nara T.Y. (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr; 24: 345-376
  39. Narce M., Poisson J.P. (1995) Age-related depletion of linoleic acid desaturation in liver microsomes from young spontaneously hypertensive rats. Prostaglandins Leukot Essent Fatty Acids; 53(1): 59-63
  40. Niestroj I. (2000) Praxis der Orthomolekularen Medizin. Hippokrates Verlag GmbH, Stuttgart 2000
  41. Pawlosky R.J., Salem N.Jr. (2004) Perspectives on alcohol consumption: liver polyunsaturated fatty acids and essential fatty acid metabolism. Alcohol; 34(1): 27-33. Review
  42. Schmidt E., Schmidt N. (2004) Leitfaden Mikronährstoffe. Orthomolekulare Prävention und Therapie. 1. Auflage. Urban & Fischer Verlag, München
  43. Singer P. (1994) Was sind, wie wirken Omega-3-Fettsäuren? Umschau Zeitschriftenverlag, Frankfurt am Main, Eschborn
  44. Stillwell W., Wassall S.R. (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids; 126(1): 1-27
  45. U.S. Department of Agriculture, Agricultural Research Service. (2008) USDA National Nutrient Database for Standard Reference, Release 21. Available at: www.nal.usda.gov/fnic/foodcomp/search/
  46. Venkatesan S., Rideout J.M., Simpson K.J. (1990) Microsomal delta 9, delta 6 and delta 5 desaturase activities and liver membrane fatty acid profiles in alcohol-fed rats. Biomed Chromatogr; 4(6): 234-8

  • Seite empfehlen: